A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics simulation
نویسنده
چکیده
A scalable parallel algorithm has been designed to study long-time dynamics of many-atom systems based on the nudged elastic band method, which performs mutually constrained molecular dynamics simulations for a sequence of atomic configurations (or states) to obtain a minimum energy path between initial and final local minimum-energy states. A directionally heated nudged elastic band method is introduced to search for thermally activated events without the knowledge of final states, which is then applied to an ensemble of bands in a path ensemble method for long-time simulation in the framework of the transition state theory. The resulting molecular kinetics (MK) simulation method is parallelized with a space–time-ensemble parallel nudged elastic band (STEP-NEB) algorithm, which employs spatial decomposition within each state, while temporal parallelism across the states within each band and band-ensemble parallelism are implemented using a hierarchy of communicator constructs in the Message Passing Interface library. The STEP-NEB algorithm exhibits good scalability with respect to spatial, temporal and ensemble decompositions on massively parallel computers. The MK simulation method is used to study low strain-rate deformation of amorphous silica. 2007 Elsevier B.V. All rights reserved. PACS: 02.70.-c; 02.70.Ns; 82.20.Db
منابع مشابه
Size Dependence of the Elastic Properties of Pd Nanowire: Molecular Dynamics Simulation
The mechanical properties including elastic stiffness constants as well as bulk modulus of Palladium (Pd) nanowire were calculated in the constant temperature and pressure (NPT), ensemble by molecular dynamics (MD) simulation technique. The quantum Sutton-Chen (Q-SC) many-body potential was used to calculate the cohesive energy as well as forces experience by every atoms. The temperature and pr...
متن کاملA growing string method for determining transition states: comparison to the nudged elastic band and string methods.
Interpolation methods such as the nudged elastic band and string methods are widely used for calculating minimum energy pathways and transition states for chemical reactions. Both methods require an initial guess for the reaction pathway. A poorly chosen initial guess can cause slow convergence, convergence to an incorrect pathway, or even failed electronic structure force calculations along th...
متن کاملAn introductory overview of action-derived molecular dynamics for multiple time-scale simulations
In this introductory paper, we briefly review the action-derived molecular dynamics (ADMD) that has recently been developed for the atomistic simulation of infrequent-event systems such as surface diffusion process and complex molecular formation. The method is specifically designed to find a dynamical trajectory when the final atomic configuration is given as a priori. ADMD has its theoretical...
متن کاملAn efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملGeneralized-Ensemble Algorithms for Protein Folding Simulations
Conventional simulations of complex systems in the canonical ensemble suffer from the quasi-ergodicity problem. A simulation in generalized ensemble overcomes this difficulty by performing a random walk in potential energy space and other parameter space. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities as functions of temperature by the single-his...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 178 شماره
صفحات -
تاریخ انتشار 2008